61 resultados para animal models, neutrophils, platelets, sheep, TRALI, two-event

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-36)amide (tGLP-1) is an important insulin-releasing hormone of the enteroinsular axis which is secreted by endocrine L-cells of the small intestine following nutrient ingestion. The present study has evaluated tGLP-1 in the intestines of normal and diabetic animal models and estimated the proportion present in glycated form. Total immunoreactive tGLP-1 levels in the intestines of hyperglycaemic hydrocortisone-treated rats, streptozotocin-treated mice and ob/ob mice were similar to age-matched controls. Affinity chromatographic separation of glycated and non-glycated proteins in intestinal extracts followed by radioimmunoassay using a fully crossreacting anti-serum demonstrated the presence of glycated tGLP-1 within the intestinal extracts of all control animals (approximately 19%., of total tGLP-1 content). Chemically induced and spontaneous animal models of diabetes were found to possess significantly greater levels of glycated tGLP-1 than controls, corresponding to between 24-71% of the total content. These observations suggest that glycated tGLP-1 may be of physiological significance given that such N-terminal modification confers resistance to DPP IV inactivation and degradation, extending the very short half-life (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although Wnt signaling is known to mediate multiple biological and pathological processes, its association with diabetic retinopathy (DR) has not been established. Here we show that retinal levels and nuclear translocation of beta-catenin, a key effector in the canonical Wnt pathway, were increased in humans with DR and in three DR models. Retinal levels of low-density lipoprotein receptor-related proteins 5 and 6, coreceptors of Wnts, were also elevated in the DR models. The high glucose-induced activation of beta-catenin was attenuated by aminoguanidine, suggesting that oxidative stress is a direct cause for the Wnt pathway activation in diabetes. Indeed, Dickkopf homolog 1, a specific inhibitor of the Wnt pathway, ameliorated retinal inflammation, vascular leakage, and retinal neovascularization in the DR models. Dickkopf homolog 1 also blocked the generation of reactive oxygen species induced by high glucose, suggesting that Wnt signaling contributes to the oxidative stress in diabetes. These observations indicate that the Wnt pathway plays a pathogenic role in DR and represents a novel therapeutic target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nasal congestion is one of the most troublesome symptoms of many upper airways diseases. We characterized the effect of selective α2c-adrenergic agonists in animal models of nasal congestion. In porcine mucosa tissue, compound A and compound B contracted nasal veins with only modest effects on arteries. In in vivo experiments, we examined the nasal decongestant dose-response characteristics, pharmacokinetic/pharmacodynamic relationship, duration of action, potential development of tolerance, and topical efficacy of α2c-adrenergic agonists. Acoustic rhinometry was used to determine nasal cavity dimensions following intranasal compound 48/80 (1%, 75 µl). In feline experiments, compound 48/80 decreased nasal cavity volume and minimum cross-sectional areas by 77% and 40%, respectively. Oral administration of compound A (0.1-3.0 mg/kg), compound B (0.3-5.0 mg/kg), and d-pseudoephedrine (0.3 and 1.0 mg/kg) produced dose-dependent decongestion. Unlike d-pseudoephedrine, compounds A and B did not alter systolic blood pressure. The plasma exposure of compound A to produce a robust decongestion (EC(80)) was 500 nM, which related well to the duration of action of approximately 4.0 hours. No tolerance to the decongestant effect of compound A (1.0 mg/kg p.o.) was observed. To study the topical efficacies of compounds A and B, the drugs were given topically 30 minutes after compound 48/80 (a therapeutic paradigm) where both agents reversed nasal congestion. Finally, nasal-decongestive activity was confirmed in the dog. We demonstrate that α2c-adrenergic agonists behave as nasal decongestants without cardiovascular actions in animal models of upper airway congestion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic retinopathy (DR) is a major cause of visual impairment worldwide. The precise pathogenesis of this diabetic complication remains ill-defined and this is reflected in the limited options for preventing development and progression of this disease. The value of animal models to understand and treat human disease is well recognised and this chapter focuses on the range of in vivo model systems that are available for studying DR. These models have been developed over many decades and utilised to aid our understanding of what causes DR, about how microvascular and neural lesions develop and to provide evidence for key cellular and molecular mechanisms that drive this pathology. A wide range of animal models of DR are currently available, each with advantages and disadvantages that need to be understood and evaluated for their scientific and clinical value. As transgenic and imaging technology improves, more models will be developed and they will continue to play a critical role in the development of new therapeutic approaches to DR by providing robust, preclinical evidence prior to clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immune system comprises an integrated network of cellular interactions. Some responses are predictable, while others are more stochastic. While in vitro the outcome of stimulating a single type of cell may be stereotyped and reproducible, in vivo this is often not the case. This phenomenon often merits the use of animal models in predicting the impact of immunosuppressant drugs. A heavy burden of responsibility lies on the shoulders of the investigator when using animal models to study immunosuppressive agents. The principles of the three R׳s: refine (less suffering,), reduce (lower animal numbers) and replace (alternative in vitro assays) must be applied, as described elsewhere in this issue. Well designed animal model experiments have allowed us to develop all the immunosuppressive agents currently available for treating autoimmune disease and transplant recipients. In this review, we examine the common animal models used in developing immunosuppressive agents, focusing on drugs used in transplant surgery. Autoimmune diseases, such as multiple sclerosis, are covered elsewhere in this issue. We look at the utility and limitations of small and large animal models in measuring potency and toxicity of immunosuppressive therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl) benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenyl-ethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phen-cyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl) phenyl) methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl) ethynyl) nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence accumulating from biological and epidemiological studies suggests that high levels of serum cholesterol may promote the pathological processes that lead to Alzheimer's disease (AD). Lowering cholesterol in experimental animal models slows the expression of Alzheimer's pathology. These findings raise the possibility that treating humans with cholesterol lowering medications might reduce the risk of developing AD or help treat it. The statins (lovastatin, pravastatin, simvastatin, and others) are powerful cholesterol lowering agents of proven benefit in vascular disease. Several clinical studies comparing the occurrence of AD between users and non-users of statins suggested that risk of AD was substantially reduced among the users. However, because these studies were not randomized trials, they provided insufficient evidence to recommend statin therapy. Cochrane reviews are based on the best available information about healthcare interventions and they focus primarily on randomized controlled trials (RCTs). On the issue of prevention, two randomized trials have been carried out and neither showed any reduction in occurrence of AD in patients treated with statins compared to those given placebo. Statins cannot therefore be recommended for the prevention of AD. Regarding treatment of AD, the large RCTs which have assessed this outcome have not published their results. Initial analysis from the studies available indicate statins have no benefit on the outcome measure ADAS-Cog but have a significant beneficial effect on MMSE as an outcome. We need to await full results from the RCTs before we can be certain. In addition statins were not detrimental to cognition in either systematic review.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gremlin, a cell growth and differentiation factor, promotes the development of diabetic nephropathy in animal models, but whether GREM1 gene variants associate with diabetic nephropathy is unknown. We comprehensively screened the 5' upstream region (including the predicted promoter), all exons, intron-exon boundaries, complete untranslated regions, and the 3' region downstream of the GREM1 gene. We identified 31 unique variants, including 24 with a minor allele frequency exceeding 5%, and 9 haplotype-tagging single nucleotide polymorphisms (htSNPs). We selected one additional variant that we predicted to alter transcription factor binding. We genotyped 709 individuals with type 1 diabetes of whom 267 had nephropathy (cases) and 442 had no evidence of kidney disease (controls). Three individual SNPs significantly associated with nephropathy at the 5% level, and two remained significant after adjustment for multiple testing. Subsequently, we genotyped a replicate population comprising 597 cases and 502 controls: this population supported an association with one of the SNPs (rs1129456; P = 0.0003). Combined analysis, adjusted for recruitment center (n = 8), suggested that the T allele conferred greater odds of nephropathy (OR 1.69; 95% CI 1.36 to 2.11). In summary, the GREM1 variant rs1129456 associates with diabetic nephropathy, perhaps explaining some of the genetic susceptibility to this condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In reconstructive surgery, skeletal muscle may endure protracted ischemia before reperfusion, which can lead to significant ischemia/reperfusion injury. Ischemic postconditioning induced by brief cycles of reperfusion/reocclusion at the end of ischemia has been shown to salvage skeletal muscle from ischemia/reperfusion injury in several animal models. However, ischemic postconditioning has not been confirmed in human skeletal muscle. Using an established in vitro human skeletal muscle hypoxic conditioning model, we tested our hypothesis that hypoxic postconditioning salvages ex vivo human skeletal muscle from hypoxia/reoxygenation injury and the mechanism involves inhibition of opening of the mitochondrial permeability transition pore (mPTP) and preservation of ATP synthesis. Muscle strips (~0.5×0.5×15mm) from human rectus abdominis muscle biopsies were cultured in Krebs-Henseleit-HEPES buffer, bubbled with 95%N(2)/5%CO(2) (hypoxia) or 95%O(2)/5%CO(2) (reoxygenation). Samples were subjected to 3h hypoxia/2h reoxygenation. Hypoxic postconditioning was induced by one or two cycles of 5min reoxygenation/5min hypoxia after 3h hypoxia. Muscle injury, viability and ATP synthesis after 2h of reoxygenation were assessed by measuring lactate dehydrogenase (LDH) release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction and ATP content, respectively. Hypoxic postconditioning or treatment with the mPTP-opening inhibitors Cyclosporine A (CsA, 5×10(-6)M) or N-Methyl-4-isoleucine Cyclosporine (NIM811, 5×10(-6)M) 10min before reoxygenation decreased LDH release, increased MTT reduction and increased muscle ATP content (n=7 patients; P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data from animal models indicate that neonatal stress or pain can permanently alter subsequent behavioral and/or physiological reactivity to stressors. However, cumulative effects of pain related to acute procedures in the neonatal intensive care unit (NICU) on later stress and/or pain reactivity has received limited attention. The objective of this study is to examine relationships between prior neonatal pain exposure (number of skin breaking procedures), and subsequent stress and pain reactivity in preterm infants in the NICU. Eighty-seven preterm infants were studied at 32 (+/-1 week) postconceptional age (PCA). Infants who received analgesia or sedation in the 72 h prior to each study, or any postnatal dexamethasone, were excluded. Outcomes were infant responses to two different stressors studied on separate days in a repeated measures randomized crossover design: (1) plasma cortisol to stress of a fixed series of nursing procedures; (2) behavioral (Neonatal Facial Coding System; NFCS) and cardiac reactivity to pain of blood collection. Among infants born